

LGCIEM/BD/BTC/BL Approved LGCIEM/BD/BTC Hyeon Min Song

Byung Sup Kim

PRODUCT SPECIFICATION

NormalDateRevDocument No.Date2016-04-064DescriptionLithium Ion ICP103450A12000mAh4

PRODUCT SPECIFICATION

Rechargeable Lithium Ion Battery Model : ICP103450 A1 2000mAh

20 YOIDO-DONG YOUNGDUNGPO-GU, SEOUL 150-721, KOREA TEL : (82) 2-3773-1114 FAX : (82) 2-3773-7005 <u>http://www.lgchem.com</u>

Revision History

Revision	Date	Originator	Description
0	2015-02-25	Hyeon Min Song	Original Release
1	2015-08-13	Hyeon Min Song	Adding Safety operating parameters for GB31241
2	2015-11-10	Hyeon Min Song	Cell weight change to Max 39.2
3	2015-11-17	Hyeon Min Song	Caution & prohibitions
4	2015.04.06	Hyeon Min Song	Cell impedance c 4.2.1

Contents

Revision History	. 2
Contents	.3
1. General Information	4
1.1 Scope	
1.2 Application	
1.3 Product Classification	
1.4 Model Name	
2. Nominal Specification	4
2.1 Recommended specification	
2.2 Safety operating parameters for GB31241	
3. Appearance and Dimension	5
3.1 Appearance	
3.2 Dimension	
4. Performance Specification	5
4.1 Standard Test Condition	
4.2 Electrical Specification	
4.3 Environmental Specification	
4.4 Mechanical Specification	
4.5 Safety Specification	
5. Cautions and Prohibitions in Handling	9
6. Dimensional Drawing	11

<u>Rev</u>

1. General Information

1.1 Scope

This product specification defines the requirements of the rechargeable lithium ion battery to be supplied to the Customer by LG Chem.

- 1.2 Application: Accessory
- 1.3 Product classification: Prismatic rechargeable lithium ion battery
- 1.4 Model name: ICP103450A1

2. Nominal Specification

2.1 Recommended specification

ltem	Condition / Note	Specification	
2.1.1 Capacity	Std. charge / discharge	Nominal 2075mAh (C _{nom})	
		Minimum 2000mAh (C _{min})	
2.1.2 Nominal Voltage	Average	3.7V	
2.1.3 Standard Charge 1	Constant current	0.3C(600mA)	
(Refer to 4.1.1)	Constant voltage	4.2V	
	End condition (Cut off)	100mA	
2.1.4 Max. Charge Current	-	1.0C (2000mA)	
2.1.5 Standard Discharge	Constant current	0.2C (400mA)	
(Refer to 4.1.3)	End voltage(Cut off)	2.75V	
2.1.6 Max. Discharge Current	For continuous discharge	1.5C (3000mA)	
2.1.7 Weight	Max	39.2g	
2.1.8 Operating Temperature	Charge	0 ~45℃	
	Discharge	-20 ~ 60 ℃	
2.1.9 Storage Temperature	1 month	-20 ~ 60 ℃	
(for shipping state ⁱ)	3 month	-20 ~ 45 ℃	
	1 year	-20 ~ 20 ℃	

i : Shipping state : About 50% capacity of fully charged state

2.1 Safety operating parameters for GB31241

安全工作参数	符号	Specification
2.2.1 充电限制电压	Ucl	4.20V
2.2.2 充电上限电压	Uup	4.25V
2.2.3 放电截止电压	Udo	2.75V
2.2.4 推荐充电电流	lcr	0.3C (600mA)
2.2.5 最大充电电流	lcm	1.0C (2000mA)
2.2.6 推荐放电电流	ldr	0.2C (400mA)
2.2.7 最大放电电流	ldm	1.5C (3000mA)

3. Appearance and Dimension

3.1 Appearance

There shall be no such defects as deep scratch, crack, rust, discoloration or leakage, which may adversely affect the commercial value of the cell.

3.2 Dimension

Thickness:Shipping thickness max. 10.45 mmWidth: 33.70 ± 0.20 mmHeight: 48.25 ± 0.30 mm

4. Performance Specification

- 4.1 Standard test condition
 - 4.1.1 Standard Charge

Unless otherwise specified, "Standard Charge" shall consist of charging at constant current of 0.3C. The cell shall then be charged at constant voltage of 4.20V while tapering the charge current. Cut off current is 100mA in all. For test purposes, charging shall be performed at $23^{\circ}C \pm 2^{\circ}C$.

4.1.2 Standard Discharge

"Standard Discharge" shall consist of discharging at a constant current of 0.2C to 2.75V. Discharging is to be performed at 23 $^{\circ}C \pm 2 ^{\circ}C$ unless otherwise noted (such as capacity versus temperature).

4.1.3 Fast Charge / discharge condition

Cells shall be charged at constant current of 0.7C to 4.20V with end current of 100mA. Cells shall be discharged at constant current of 0.5C to 2.75V Cells are to rest 10 minutes after charge and 20 minutes after discharge.

4.2 Electrical Specification

ltem	Condition	Specification
4.2.1	Cell shall be measured at 1kHz after charge per	46 ± 7 m Ω , without PTC
Initial AC Impedance	4.1.1.	
4.2.2	Cells shall be charged per 4.1.1 and discharged	\geq 2000 mAh (C _{min.})
Initial Capacity	per 4.1.3 within 1h after full charge.	
4.2.3	Cells shall be charged and discharged per 4.1.3	351^{th} 0.2C \geq 80%

PRODUCT SPECIFICATION

Normal

Document No. BPR-PS-1DE

Cycle Life	350 cycles. A cycle is defined as one charge	(of C _{min} In 2.1)
	and one discharge. 351st discharge capacity	
	shall be measured per 4.1.1 and 4.1.2	

4.3 Environmental specification.

ltem	Condition		Specification
4.3.1	Cells shall be charged per 4.1.1 and stored in a		Capacity remaining rate
Storage Characteristics	temperature-controlled	environment at 23°C ±	90% (of C _{min.} in 2.1)
	2ºC for 30 days. Afte	r storage, cells shall be	
	discharged per 4.1.2	to obtain the remaining	
	capacity.		
4.3.2	Cells shall be charged	per 4.1.1 and stored in a	No leakage,
High Temperature	temperature-controlled	environment at 60°C for	Capacity recovery rate
Storage Test	30 days. After storage,	cells shall be discharged	$\geq~$ 70% (of C_{min.} in 2.1)
	per 4.1.2 and cycled	per 4.1.3 for 3 cycles to	
	obtain recovered capac	city*.	
4.3.3	Cells are charged per	4.1.1 and stored at 60°C	No leakage, No rust
High Temperature and	(95% RH) for 168 ho	urs. After test, cells are	Capacity recovery rate
High Humidity Test	umidity Test discharged per 4.1.2 and cycled per 4.1.3 for		$\geq~$ 80% (of C_{min.} in 2.1)
	cycles to obtain recovered capacity.		
4.3.4	65°C (8h) \leftarrow 3hrs \rightarrow -20°C (8h) for 8 cycles		No leakage
Thermal Shock Test	with cells charged per	4.1.1 After test, cells are	Capacity recovery rate
	discharged per 4.1.2 a	nd cycled per 4.1.3 for 3	$\geq~$ 80% (of C_{min.} in 2.1)
	cycles to obtain recover	ed capacity.	
4.3.5	Cells shall be charged	per 4.1.1 at 23°C ± 2°C	
Temperature	and discharged per	4.1.2 at the following	
Dependency of	temperatures.		
Capacity	Charge	Discharge	Capacity
		-10℃	70% of C _{min.}
		0℃	90% of C _{min.}
	23℃	23 ℃	100% of C _{min.}
		60 ℃	95% of C _{min.}

* Remaining Capacity : After storage, cells shall be discharged with Std. condition(4.1.2) to measure the remaining capacity. ** Recovery Capacity : After storage, cells shall be discharged with fast discharge condition(4.1.3), and then cells shall be charged with std. charge condition(4.1.1), and then discharged with Std. condition(4.1.2). This charge / discharge cycle shall be repeated three times to measure the recovery capacity.

4.4 Mechanical Specification

ltem	Condition	Specification
4.4.1	Cells charged per 4.1.1 are dropped onto an oak board	No leakage
Drop Test	from 1.5 meter height for 3 cycles, where each cycle	No temperature rising
	consists of 3 drops from each of the three mutually	
	perpendicular axis (x, y, z) for total of 9 drops.	
4.4.2	Cells charged per 4.1.2 are vibrated for 90 minutes per	No leakage
Vibration Test	each of the three mutually perpendicular axis (x, y, z)	
	with total excursion of 0.8mm, frequency of 10Hz to	
	55Hz and sweep of 1Hz change per minute.	

4.5 Safety Specification

ltem	Condition	Specification
4.5.1	Cells are discharged per 4.1.2, then charged at constant	No explode, No fire
Overcurrent	current of 3 times the max. charge condition and	
Charge Test	constant voltage of 4.20V while tapering the charge	
	current. Charging is continued for 7 hours (Per UL1642).	
4.5.2	Cells are charged per 4.1.1, and the positive and	No explode, No fire
External Short -	negative terminal is connected by a 100m Ω -wire for 1	
Circuiting Test	hour (Per UL1642).	
4,5.3	Cells are discharged at constant current of 0.2C to	No explode, No fire
Overdischarge	250% of the minimum capacity.	
Test		
4.5.4	Cells are charged per 4.1.1 and heated in a circulating	No explode, No fire
Heating Test	air oven at a rate of 5°C per minute to 130°C. At 130°C,	
	oven is to remain for 10 minutes before test is	
	discontinued (Per UL1642).	

PRODUCT SPECIFICATION Normal

Document No.

BPR-PS-1DE

<u>Date</u> <u>Rev</u> 2016-04-06 4

4.5.5	Cells charged per 4.1.1 are impacted with their	No explode, No fire
Impact Test	longitudinal axis parallel to the flat surface and	
	perpendicular to the longitudinal axis of the 15.8mm	
	diameter bar (Per UL1642).	
4.5.6	Cells charged per 4.1.1 are crushed with their	No explode, No fire
Crush Test	longitudinal axis parallel to the flat surface of the	
	crushing apparatus. And cells are also to be rotated 90	
	degrees around its longitudinal axis so that both the	
	wide side will be subjected to the crushing force. (Per	
	UL1642).	

5. Caution and Prohibition in Handling

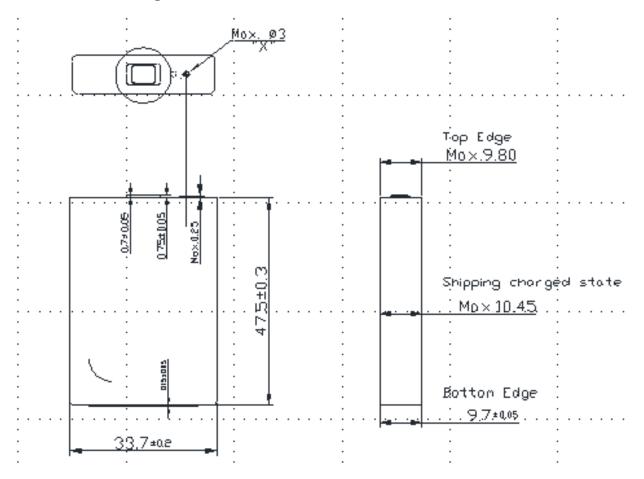
Warning for using the lithium ion rechargeable battery. Mishandling of the battery may cause heat, fire and deterioration in performance. Be sure to observe the following.

Caution

- When using the application equipped with the battery, refer to the user's manual before usage.
- Please read the specific charger manual before charging.
- Charge time should not be longer than specified in the manual.
- When the cell is not charged after long exposure to the charger, discontinue charging.
- Battery must be charged at operating temperature range 0 ~ 45 ℃.
- Battery must be discharged at operating temperature range -20 ~ 60 °C.
- Please check the positive(+) and negative(-) direction before packing.
- When a lead plate or wire is connected to the cell for packing, check out insulation not to short-circuit.
- Battery must be stored separately.
- Battery must be stored in a dry area with low temperature for long-term storage.
- Do not place the battery in direct sunlight or heat.
- Do not use the battery in high static energy environment where the protection device can be damaged.
- When rust or smell is detected on first use, please return the product to the seller immediately.
- The battery must be away from children or pets
- When cell life span shortens after long usage, please exchange to new cells.
- The design of battery pack and its structure should be reviewed physically, mechanically and electrically not to cause cell imbalance.
- The battery pack for multiple cells should be designed to monitor the voltage of each bank.
- Do insulate between the metal plate and cell or other components not to make a electrical short.
- Protection circuit should have function which is described below inside battery pack, to insure safety of battery in case of misuse.
 - A. Overcharge protection
 - i. At the voltage maximum 4.25V (Maximum recommended voltage)/cell by charge, overcharge protection should work. Then charge current shall be shut down.
 - B. Over discharge protection
 - i. At the voltage range 2.5V/cell over discharge protection should work. Then discharge current shall be shut down.
 - C. Over discharge current protection
 - When discharge current exceed 5about 1.5C, over discharge current protection should work.
 Then over discharge current shall be shut down.

Prohibitions

- Do not use different charger. Do not use cigarette jacks (in cars) for charging.
- Do not charge with constant current more than maximum charge current.
- Do not disassemble or reconstruct the battery.
- Do not throw or cause impact.
- Do not pierce a hole in the battery with sharp things. (such as nail, knife, pencil, drill)
- Do not use with other batteries or cells.
- Do not solder on battery directly.
- Do not press the battery with overload in manufacturing process, especially ultrasonic welding.
- Do not use old and new cells together for packing.
- Do not expose the battery to high heat. (such as fire)
- Do not put the battery into a microwave or high pressure container.
- Do not use the battery reversed.
- Do not connect positive(+) and negative(-) with conductive materials (such as metal, wire)
- Do not allow the battery to be immerged in or wetted with water or sea-water.
- Do not give immoderate heat and force to battery cell during a welding process of metal plates on it



PRODUCT SPECIFICATION

Normal

<u>Document No.</u> BPR-PS-1DE

6. Dimensional Drawing

